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Abstract

An elastic layer of circular cross-section which is bonded between rigid plates and subjected to pure bending moment
is analyzed through a theoretical approach. Based on two kinematic assumptions, the governing equations for the two
horizontal displacement functions are established from the equilibrium equations. The horizontal displacements are
then solved by satisfying the stress boundary conditions in the elastic layer. Through these solved displacements, the
vertical stress in the elastic layer, the shear stress on the bonding surfaces, and the tilting stiffness of the bonded layer are
derived in closed-forms and are also compared with the results of finite element analysis.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Bonded elastic layer; Elastomeric bearing; Flexure analysis

1. Introduction

A laminated elastomeric bearing consists of sheets of elastomer bonded to interleaving steel plates. When
an elastic layer is bonded between two rigid plates, the restricted lateral expansion of the bonded surfaces of
the elastic layer results in higher compression stiffness than an unbonded elastic layer. Thus, a laminated
elastomeric bearing can provide high vertical rigidity to sustain gravity loading, while still providing the
same horizontal flexibility of an unbonded elastomer.

To analyze the stiffness of the bonded layer, two kinematic assumptions are usually adopted: (i) planes
parallel to the rigid bonding plates before deformation remain planar after loading; (ii) lines normal to the
rigid bonding plates before deformation become parabolic after loading. Gent and Lindley (1959) derived
the compression stiffness of an incompressible elastic layer for infinite-strip shape and circular shape.
Subsequently, Gent and Meinecke (1970) extended this method to analyze the compression stiffness and
tilting stiffness of incompressible elastic layers for square and other shapes.

Although rubber can be treated as incompressible in some analyses, the assumption of incompressibility
tends to overestimate the compression stiffness and tilting stiffness of the bonded rubber layer when the
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layer’s shape factor (defined as the ratio of the one bonded area to the force-free area) is high. Kelly (1997)
developed a “pressure solution” approach to derive the compression stiffness and the tilting stiffness
considering the effect of bulk compressibility. The solutions are available for the layers of infinite-strip
shape (Chalhoub and Kelly, 1991), circular shape (Chalhoub and Kelly, 1990) and square shape (Koh and
Kelly, 1987).

Lindley (1979a) applied an energy method to derive the compression stiffness of the infinite-strip and
circular shapes as well as the tilting stiffness of the infinite-strip shape (Lindley, 1979b) for the material of
any Poisson’s ratio. Koh and Kelly (1989) utilized a ‘““variable transform” approach to derive the com-
pression stiffness of the square shape for compressible material. Recently, Koh and Lim (2001) extended
this approach to solve the compression stiffness of the rectangular shape.

The stiffness of bonded layers is related to the vertical stress, which can be derived from the mean
pressure. Tsai and Lee (1998 and 1999) developed a pressure approach to derive the compression stiffness
and the tilting stiffness of bonded elastic layers in infinite-strip, circular and square shapes. These solutions
are accurate for the material of any Poisson’s ratio. However, when using the pressure approach to derive
the titling stiffness of the bonded circular layers by Tsai and Lee (1999), the horizontal displacements of the
elastic layer are unable to be derived from the mean pressure, such that the shear stress distribution on the
bonding surfaces of the circular layer subjected to pure bending moment cannot be studied.

In this paper, a new procedure to analyze the bonded circular layers subjected to pure bending moment
is developed. Instead of directly solving the mean pressure, the governing equations of two displacement
functions derived from the equilibrium equations are established, from which the horizontal displacements
are solved by satisfying the stress boundary conditions of the bonded layers. The distribution of the vertical
stress in the elastic layer and the shear stress on the bonding surface are then derived and compared with the
finite element solutions. The derived tilting stiffness for the bonded circular layer is shown to be extremely
close to the result of Tsai and Lee (1999).

2. Governing equations

A circular layer of linearly elastic, homogeneous and isotropic material bonded between two rigid plates
is shown in Fig. 1. The circular layer has a diameter of 25 and a thickness of ¢. A cylindrical polar coor-
dinate system (r, 0, z) is established with the origin at the center of the layer. Under a pure bending moment
M, the rigid plates on the top and bottom of the layer rotate about the y axis (the r axis at 6 = /2) to form

-
-

——————

_____

Fig. 1. Circular elastic layer bonded between rigid plates under flexure load.
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an angle ¢. Denote u, v and w as the displacements along the », 0 and z directions, respectively. The dis-
placements are assumed to have the form

u(r,0,z) :u(r,0)<1 —4%2) (1)
v(r,0,z) = o(r, 0) (1 - 4%) (2)
w(r,0,z) = %rzcos@ (3)

where p = t/¢ is the radius of bending curvature, # and o are the horizontal displacements in the middle
plane of the layer. Eqgs. (1) and (2) represent the kinematic assumption of quadratically varied displace-
ments. Eq. (3) satisfies the assumption that planes parallel to the rigid plates remain planar. The expressions
in Egs. (1) and (2) are different from the displacement expressions used by Tsai and Lee (1999) which have
an additional term considering the deformation of pure bending. The deformation of pure bending is
quadratically varied with z, so that it can be immerged in the terms of #(», ) and o(r, 0). The expressions in
Egs. (1) and (2) ensure that the rigid plates do not have any horizontal movement.
In the cylindrical coordinate system, the mean pressure p has a relation with displacements of

_ . b
p(}",e,z) = K(”,r+r+ , +W,Z> (4)

where « is the bulk modulus, and the commas imply partial differentiation with respect to the indicated
coordinates. The normal stresses and shear stresses have the following expressions

Oy = _’%p + 2,“”.1' (5)
_ 4 +2 (E+Q> (6)

o0 = TP T ARG

A

Oz = — Ep +2puw, (7)
e _v

Trp = u( U ) (8)

T = (U, +w,) )
- _e

@ = (v =2 (10)

in which 4 and p are Lame’s constants. For clarification, the following two displacement functions are
defined

f(r,@,z):u,—i-z—i—%
ror

v Uy

0,z)=v,+-——= 12

gr.0,2) = v, + 2 - (12)
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The equilibrium equations in the » and 6 directions can be expressed as

A
2fr - ﬁ + u,zz + W, = _p‘r (13)
r KU
2f . A
o f‘9+U,zz+W‘9 :_lﬁ (14)
' r ' r KU r

The following average quantities through the depth are defined as

p(r,0) = % /Zp(r, 0,z)dz (15)
7.0 =7 [ 10090 (16)
8.0) = [ g0 (1)

By using Egs. (3) and (11), Eq. (4) becomes
pK(errcosH) (18)
p

Substituting the displacement assumptions in Eqs. (1)—(3) into Eqgs. (13) and (14) and integrating the re-
sulting equations through the thickness lead to

AT A+2p\. 1 A+u\1

- _- — cos @ 19
N 8[( u )f rg’”+< u )pcos} (19)
P A4+2uN1- A4uN1 .

=— - — (22 ) = sin6 20
’ SK Iz )rf’ﬁg’ ( I )psm} (20)

Differentiating the multiplication of » and Eq. (19) with respect to » and then adding the result to the
differentiation of Eq. (20) with respect to 0 yield

_ 1- 1 - _
f:rr + ;f:; + r_zf:()() - O(Zf =0 (21)
where o is defined as
12u
_ 22
S VTR, %) (22)

Differentiating the multiplication of » and Eq. (20) with respect to » and then subtracting the result from the
differentiation of Eq. (19) with respect to 0 yield

_ 1 1 _
8 + ;g,r + r_zg.,(%) - ﬂzg =0 (23)
where f is defined as

p=1fr (24)
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3. Solution of displacements

Under the pure bending moment, the elastic layer has the following symmetric and antisymmetric
properties

p(r,0) =p(r,—0) = —p(r,n — 0) (25)
f(r,0)=f(r,=0) = —f(r,m— 0) (26)
g(r,0) = —g(r,—0) = g(r,n — 0) (27)
a(r,0) = a(r, —0) = —a(r,n - 0) (28)
o(r,0) = —o(r, —0) = o(r,n — 0) (29)

To satisfy the above conditions, the solutions of Egs. (21) and (23) have the following expressions

f(r,0) = f: A,1,(ar) cos n6 (30)
n=135....

g(r,0) = i B,I1,(pr) sinnd (31)
n=13,5,...

where I, is the modified Bessel function of the first kind of order n; 4, and B, are the constants to be
determined. Substituting Egs. (30) and (31) into Egs. (19) and (20) gives

_ 12 )u —+ u 3 > An n n
= < . ) cos 0+ :1235 { = [zn,l(ar) - azrn(ocr)} -2 I,,(,Br)} cos n0 (32)
B 2+ . 3 & nA, B, n .
= (225 z -ty =g, -1
v=-%, ( . ) sin 0+ 3 :;:5 { (o) + 7 [ 1 (Br) % ,1([)’;’)} } sin n0 (33)
At the edge r = b, the normal stress in the r direction must satisfy the following condition
0,(b,0,2) =0 (34)
By using the expression of g, in Eq. (5) and taking integration through the depth, Eq. (34) becomes
A\ - 2 A\ b
1 - _ — frd
( +2#>f(b,0) 35[ (b,0) + (b, 0)} + <2N> S c0s0=0 (35)
Substituting Egs. (30), (32) and (33) into the above equation gives
a2 1 i\ b
I+—+ I (ab) — —Iy(ab) p Ay + b Iy(pb)| B, = — — 36
{_ - (b)]lm L >}1 ) = goon |3 = =(5,) (36)
for n =1, and
Iy (o) — 1,y (a) V4 | T ) — (Bb) | B (37)
i 2,[1 (O{b)z n ab n—1 n (ﬁb)z n ﬁ Iy

forn=3,57,....
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The shear stress 7,4 must satisfy the following condition at the edge r = b

Trﬁ(ba 632) =0 (38)
By using the expression of 7,9 in Eq. (8) and taking integration through the depth, Eq. (38) becomes
g(b.0)+ 5 [ug(b 0) — (bﬁ)] ~0 (39)
Substituting Eqgs. (31)—(33) into the above equation gives
_&h(cxb) — = Iy(ab) | 4, + { 1 +&]h(ﬁb) - %Io(ﬁb)}Bl -0 (40)
forn=1, and
-2(112 +n) 2n 2(n® +n) _
—(ocb)2 I,(ab) abln,l(ocb) A, + { l+——= ()’ 1,(Bb) — ﬁ I, 1(ﬁb)}Bn =0 (41)
forn=23,57,....
Egs. (36) and (40) give the solution
4= f%m (42)
B =- %ﬁbB (43)
with
- A {1+ 2 [ m) — 21o()} »
{[2+2]npe) - %Io(ﬁb)} 211 (ab) — 1 (Bb)Io(o0)
l _2
B=— TR > [ (O‘b) 1 (ab)] )
{[2+%] it - (ﬁb)} 211 (ab) — 1 (Bb)o(b)

in which the relation between Egs. (22) and (24) is applied. For n = 3,5,7,..., Egs. (37) and (41) give the
solution

A,=0; B,=0 (46)
Substituting Eqgs. (42), (43) and (46) into Eqgs. (32) and (33) lead to

_ 32 wy\ 2 — 1 1

=5 (5) { (1) G~ At o) +3 EW”} cos! (47

_ 32 u 2 1 o 1 '

v=— (4#){ (1 +I) (Bb)° +Aall(ar) _B|:[o(ﬁ7”) —Ell(ﬁr)}}mnH (48)

If the elastic layer has a Poisson’s ratio v & 0.5, the magnitude of A becomes infinite and o is infinitesimal.
For a small quantity x,

I(x) =1 +lx2, Ii(x) = lx+ix3

6 (49)
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Applying these approximation, Egs. (47) and (48) can be reduced to

L(pr) _ L(pb)
u:b_z(i> 1+L_3£+ Bb{ - & } cos 6
pATe (Bb) 0% [ 1|1y (b) — 210(b)
/3 8 > ,Bb{jl(—ﬂr)—]o(ﬁr){-ll(ﬂ}
U<> - 2+L2+ vﬁr ﬁb sin
P (Bo)* - B* [ 1| 1) — % 1)

which are the horizontal displacements of the bonded circular layers of incompressible material.

2981

(50)

(51)

The shape factor of the bonded circular layers is defined as S = b/(2¢), which gives, from Egs. (22) and

24,

Y Lo Ul PPN

1—v

(52)

Therefore, it is known that the normalized horizontal displacements, up/b* and vp/b* in Eqgs. (47) and (48),
are the functions of S, v, /b and 0. The normalized radial displacement at 0 = 0 and the normalized
tangential displacement at 0 = n/2 are plotted in Figs. 2 and 3, respectively, as a function of »/b for the

0.2 —
0.0
‘g
S T — - v=03
0.2 — —-_— = v=045
— — — v=0495
. v=0.5
—04 L ) L) L) l L) L] L} L} l Al L) T L] ' T L] L) T ]
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
/b r/b
(a) S=2 (b) S=20

O - oo T =
—_— = v=045
‘o — — — v=0495
< 0.1
l& v=0.5
'02 L} L} LIS l L} L} L] L) ' L] L) L} L] l L] L) L] L) I —02 L] L] L] L} I L) L} L] L} ' LB B RS ' LN B ) T '
1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 05 1.0
/b r’b
(a) S=2 (b) S=20

Fig. 3. Tangential displacement with radial distance at 0 = n/2.
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0.01 -0.0026 —
0.00 )
% Q00028 S=5,v=03
% -0.01 o Theoretical
) g' E — — = - Finite element
o
T §=5,v=0.3 s
= : : £ -0.0030
> Theoretical >
-0.03 — — — - Finite element E
U o o e o L e e e e e | -0.0032 rrTrrTTrrrTrTTrTTT T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
rlb /b
(a) Radial displacement at 6=0 (b) Tangential displacement at 0=r/2
Fig. 4. Horizontal displacements in middle plane varied with radial distance.
0.04 - 0.000 —
$=5,v=0.3 i
Theoretical $=5,v=0.3
0.02 - -0.001

Theoretical
— — — - Finite element

— — — - Finite element

u(b,8,0)p/b’
o
8
|
v(b,0,0)p/b’
5
o
IS
1

-0.003 -
‘004 Ll L] L] L) I T T L] L) l ‘0004 L) L) T T l L} L} T L) ‘
0.0 0.5 1.0 0.0 0.5 1.0
o/n 0/n
(a) Radial displacement at r=b (b) Tangential displacement at r=b

Fig. 5. Horizontal displacements in middle plane varied with angle.

shape factors of 2 and 20 with several Poisson’s ratios. For the bonded layer of lower Poisson’s ratio, the
horizontal displacements become smaller and are more uniformly distributed along the radial direction.
For the bonded layer of high shape factor (S = 20), the displacements differ greatly between incompressible
material (v = 0.5) and nearly incompressible material (v = 0.495).

The deformation of the bonded circular layer is also analyzed by the finite element method. In the finite
element analysis, the circular layer is modeled by 8-node solid elements with incompatible bending modes.
The horizontal displacements calculated by the finite element method at the middle plane (z = 0) of the
layer with § = 5 and v = 0.3 are compared with the theoretical solutions of Egs. (47) and (48) in Figs. 4 and

5 as functions of r and 0, respectively, which show that the finite element solutions are very close to the
theoretical solutions.

4. Tilting stiffness

The effective bending modulus for the bonded elastic layer is defined as
oM
=& (53)

where I, = nb*/4 is the moment of inertia of the plane area about the  axis. The bending moment M has the
form

Ey
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b 2n
M:/ / &..1* cos 0dOdr (54)
o Jo
where a.. 1s the effective vertical stress defined as
1 /2
G, :—/ 0. dz (55)
L
By using the solutions of 4, in Eqs. (42) and (46), p has the form, from Egs. (18) and (30),
blr 1 —
p: —K; |:E—2—'uOCbA[1(fXI"):| cos (56)
Substituting Eq. (7) into Eq. (55) and using Egs. (3) and (56) lead to
b 2u\r A —
6'22225|:<1+7)E—ﬂfxbz41|(0(l’):| cos 0 (57)
From this, the effective bending modulus has the solution
8 (B0)* _ polo(pb) | [ ably(ab)
12 2 1+5-— ub) 1
=i (2Bl E BN 5
H 2+ 4 2110(/;b) - 2[10(ach)
When ab tends to infinitesimal, the following function of ab in Eq. (58) may be approximated by
ably(ab) 1 , 1 4
——— x4+ (ab) ———=(ab 59
b)) = T3 gy (%) (59)
Consequently, the effective bending modulus of the bonded circular layer for incompressible material is
2
_E |, (@) o
=31t 4 B2 poio(p) (60)
3 21, (Bb)

in which E is the elastic modulus of the layer. The value of the last term in the bracket is between 0.5
(Bb = o0) and 1 (b = 0). Eq. (60) can be approximated by

Poisson's ratio v

0 0.45 0.495 0.4995 0.49995 0.499995
4 | | 1 |
)
L)
3 —
w
= 4
L
2 - .
Present solution
4 — — — Tsaiand Lee (1999)
. Finite element solution
1 T I L I L) I L} l L}
0 1 2 3 4
log[1/(1-2v)]
(a) S=2

Poisson's ratio v

0 0.45 0.495 0.4995 0.49995 0.499995
300 | I ' | |
Present solution
4 — — — Tsaiand Lee (1999)
. Finite element solution
200 —
100 —
0 Ll l T I T I l L}
0 1 2 3 4 5
log[1/(1-2v)]
(b) S=20

Fig. 6. Effective bending modulus of bonded circular layers varied with Poisson’s ratio.
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E 1 )
E,,_3(3.5 7S+2S> (61)
which is applicable for S > 1.

According to Eq. (52), it is known that the normalized bending modulus E,/E is a function of Poisson’s
ratio and shape factor. The curves of the bending modulus calculated from Eq. (58) varied with v for § = 2
and 20 are plotted in Fig. 6, which show that, when compared with the finite element solution and the
solution of Tsai and Lee (1999), the bending moduli calculated by the three methods are nearly the same.
When using the pressure approach, Tsai and Lee (1999) made an assumption that the tangential dis-
placement on the edge of the middle plane of the layer is zero at the rotation axis. By means of the present
approach, this assumption becomes unnecessary.

5. Stress distribution

The effective vertical stresses calculated from Eq. (57) are plotted in Fig. 7 as a function of r/b at 0 = 0
for the shape factors of 2 and 20 with several Poisson’s ratios. In this figure, the vertical stress is normalized
by bE,/p which is the maximum bending stress according to the elementary beam theory. The curves of
v = 0.5 are calculated from

bE ( r
==3* s | e 1 ) | (b cos? (62)

4 21, (pb)

which can be derived from Eq. (57). Unlike the distribution derived by the elementary beam theory, the
vertical stress in the bonded layer is not a linear function of the radial distance. The figure indicates that the
location of the maximum vertical stress is closer to the edge for the material of lower Poisson’s ratio.

The in-plane shear stresses can be derived by substituting the displacement assumptions in Egs. (1)-(3)
into Egs. (9) and (10) and using the solutions of # and v in Egs. (47) and (48). On the bonding surface
between the elastic layer and the rigid plate (z = ¢/2), the shear stresses in the radial and tangential di-
rections have the forms as

b 2 — 1 I
1.(r,0,1/2) = 6152 ——2+A[10(w) - 1(‘”)} _phI o0 (63)
P (BD) ar pr
129
. — = v=03
1 — — =045
06 — — — v=0495
E : v=0.5 E
S 00 <
a ] 2
6] i
-0.6 -
L ot e | LI B e S B |
-1.0 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
r’lb /b
(a) S=2 (b) S=20

Fig. 7. Effective vertical stress with radial distance at 6 = 0.
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e b 2 —[1(0{1") — [1(ﬁ}") .
(7, 0,1/2) = 6ASp { ) A - + B |Iy(pr) b sin 6 (64)
When « is infinitesimal, applying the approximation in Eqs. (49) to (63) and (64) leads to
By Bb @ _ L(pb)
T.(r,0,1/2) = b;—Sb 1+ 3% e [ A J cos 0 (65)
p 5 1] 1) — 2 10(b)
Esp | 2 BN n(p) +1R] )
79,(r, 0,8/2) => 1 T Ty ” sin 0 (66)
p (2211 (pb) — 2 10(8b)

which are the bonding shear stresses for the elastic layer of incompressible material.

The bonding shear stress in the radial direction at 0 = 0 and the bonding shear stress in the tangential
direction at 6 = n/2 are plotted in Figs. 8 and 9, respectively, as functions of »/b for the shape factors of 2
and 20 with several Poisson’s ratios, which indicate that, for the bonded layer of lower Poisson’s ratio, the
bonding shear stresses have a more uniform distribution over the central part.

Te(1,0,4/2)p/(DE)

Too(r,m/2,42)pl(bEy)

7,(r,0,4/2)p/(bEy)

0.5
— - =03
—  — =045
0.3 — — — v=0495

v=0.5

|
I
|

-01 I LI} L) L) l L L] L) I L L) L) ' L § L] T I
-1.0 05 0.0 05 1.0
rlb
(b) S=20

Fig. 8. Bonding shear stress in radial direction varied with radial distance at 6 = 0.

0.6 —
T — - =03
1 — — =045
0.3—\\ — — — v=0495 //
-1
0.0 -
'03 L L) L) L] l L] L) T L] I L] T L] T l L) L] L) L) l
-1.0 -0.5 0.0 0.5 1.0
r’lb
(a) S=2
03— - v=03 - — — v=0.495
11— - v=0.45 v=0.5
02—
0.1 N
N - — - - - -
00 T ¢ & 1 ' L L I LI B B i l' LN r'l
-1.0 -0.5 0.0 0.5 1.0
/b
(a) S=2

To(r, /2 ¥2)p/(bE,)

0.04 —

v=0.3
— v=045
- = — v=0495

0.02

Trrrrrrrrrrrrrryrror

-0.5 0.0 05 1.0
r’b

(b) S=20

Fig. 9. Bonding shear stress in tangential direction varied with radial distance at 6 = =/2.
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The comparison of the bonding shear stresses between the finite element solutions and the theoretical
solutions calculated from Egs. (63) and (64) is depicted in Fig. 10 for S = 5 and v = 0.3. For the bonding
shear stress in the radial direction, the theoretical solution is very close to the finite element solution except
the edge. For the bonding shear stress in the tangential direction, both solutions have the similar distri-
bution. Because the stress in the tangential direction is much smaller than the stress in the radial direction,
numerical error of the finite element analysis induces the bonding shear stress in the tangential direction to
have a larger deviation between two solutions.

The maximum shear stress resultant on the bonding surface, Ty, is equal to 7,.(b,0,¢/2), that is,

b 24 [ e /ib]o(/ih)} |:1h10(oc ) 1}

(ﬁ}))z 4 211 (pb) 21 (ab)

Tmax = — AS . (67)
(Bb)” _ pblo(pb) bly (ob)
P 2+ 4 21]0(/;1;) - 0621]0(;1,)

For the layer of incompressible material, from Eq. (65),
b
T = S (68)

The magnitude of t,.x0/(bE) is a function of Poisson’s ratio and shape factor, which is depicted in Fig. 11.
Tmax INCreases with increasing Poisson’s ratio but reaches the plateau at a lower Poisson’s ratio for the layer

0.025
—~ $=5,v=0.3 &
g —————— Theoretical % o204 /  _ _ _ _______ -
g 0.20 — — — - Finite element § \
g : \
> 0.10 o $=5,v=0.3 1
< [ . \
< o 0015 Theoretical J
© 0.00 S — — — - Finite element
'O 10 I L] L] L] T I L I L) 'I LIRS 1_| 0010 l LA B B ) ‘ LI L B ) I L) L] L] L) I LI ) L} T I
0.5 1.0 -1.0 0.5 0.0 0.5 1.0
r/b rlb
(a) Radial shear stress at 6=0 (b) Tangential shear stress at 6=n/2

Fig. 10. Bonding shear stresses between theoretical solution and finite element solution.

Poisson's ratio v

0 0.45 0.495 0.4995 0.49995 0.499995
| | | |
20 —=
S=2 ‘
- — — 35 /
m — —s=10 , m
L d w
= — - 5=20 / g
Qx‘; 10 -3 - a— — Q()'E
& L £
- 4
-/-
0 T ] L) I T | T I L] 01 | L) T Tl'llll T T rorrrrrT
0 1 2 3 4 5 1 10 100
(a) log[1/(1-2V)] (b) S

Fig. 11. Maximum shear stress resultant on bonding surfaces.
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of smaller shape factor, so that 7., is more sensitive to the variation of shape factor for a material of higher
Poisson’s ratio. When the material is incompressible, 7,,,x varies linearly with the shape factor.

6. Conclusion

Based on the two kinematic assumptions, i.e. horizontal planes remain planar and vertical lines become
parabolic after deformation, the circular elastic layers bonded between two rigid plates and sustaining a
pure bending moment are analyzed through a theoretical approach to find the closed-form solutions of
horizontal displacements in the bonded layers. The displacements in the radial and tangential directions are
shown to be proportional to cos 6 and sin 0, respectively, and not contain any higher term of Fourier series.
The tilting stiffness of the bonded circular layer derived from these displacements is very close to the
previous research result where an additional constraint assumption is necessary to obtain the stiffness.
The analysis has no limitation on Poisson’s ratio so that the effect of Poisson’s ratio on the behavior of the
bonded layer can be studied. When the material of the bonded layer has a lower Poisson’s ratio, the shear
stress on the bonding surface has a smaller magnitude and a more uniform distribution over the central
part.
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