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Abstract

An elastic layer of circular cross-section which is bonded between rigid plates and subjected to pure bending moment

is analyzed through a theoretical approach. Based on two kinematic assumptions, the governing equations for the two

horizontal displacement functions are established from the equilibrium equations. The horizontal displacements are

then solved by satisfying the stress boundary conditions in the elastic layer. Through these solved displacements, the

vertical stress in the elastic layer, the shear stress on the bonding surfaces, and the tilting stiffness of the bonded layer are

derived in closed-forms and are also compared with the results of finite element analysis.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A laminated elastomeric bearing consists of sheets of elastomer bonded to interleaving steel plates. When

an elastic layer is bonded between two rigid plates, the restricted lateral expansion of the bonded surfaces of

the elastic layer results in higher compression stiffness than an unbonded elastic layer. Thus, a laminated

elastomeric bearing can provide high vertical rigidity to sustain gravity loading, while still providing the
same horizontal flexibility of an unbonded elastomer.

To analyze the stiffness of the bonded layer, two kinematic assumptions are usually adopted: (i) planes

parallel to the rigid bonding plates before deformation remain planar after loading; (ii) lines normal to the

rigid bonding plates before deformation become parabolic after loading. Gent and Lindley (1959) derived

the compression stiffness of an incompressible elastic layer for infinite-strip shape and circular shape.

Subsequently, Gent and Meinecke (1970) extended this method to analyze the compression stiffness and

tilting stiffness of incompressible elastic layers for square and other shapes.

Although rubber can be treated as incompressible in some analyses, the assumption of incompressibility
tends to overestimate the compression stiffness and tilting stiffness of the bonded rubber layer when the
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layer�s shape factor (defined as the ratio of the one bonded area to the force-free area) is high. Kelly (1997)

developed a ‘‘pressure solution’’ approach to derive the compression stiffness and the tilting stiffness

considering the effect of bulk compressibility. The solutions are available for the layers of infinite-strip

shape (Chalhoub and Kelly, 1991), circular shape (Chalhoub and Kelly, 1990) and square shape (Koh and
Kelly, 1987).

Lindley (1979a) applied an energy method to derive the compression stiffness of the infinite-strip and

circular shapes as well as the tilting stiffness of the infinite-strip shape (Lindley, 1979b) for the material of

any Poisson�s ratio. Koh and Kelly (1989) utilized a ‘‘variable transform’’ approach to derive the com-

pression stiffness of the square shape for compressible material. Recently, Koh and Lim (2001) extended

this approach to solve the compression stiffness of the rectangular shape.

The stiffness of bonded layers is related to the vertical stress, which can be derived from the mean

pressure. Tsai and Lee (1998 and 1999) developed a pressure approach to derive the compression stiffness
and the tilting stiffness of bonded elastic layers in infinite-strip, circular and square shapes. These solutions

are accurate for the material of any Poisson�s ratio. However, when using the pressure approach to derive

the titling stiffness of the bonded circular layers by Tsai and Lee (1999), the horizontal displacements of the

elastic layer are unable to be derived from the mean pressure, such that the shear stress distribution on the

bonding surfaces of the circular layer subjected to pure bending moment cannot be studied.

In this paper, a new procedure to analyze the bonded circular layers subjected to pure bending moment

is developed. Instead of directly solving the mean pressure, the governing equations of two displacement

functions derived from the equilibrium equations are established, from which the horizontal displacements
are solved by satisfying the stress boundary conditions of the bonded layers. The distribution of the vertical

stress in the elastic layer and the shear stress on the bonding surface are then derived and compared with the

finite element solutions. The derived tilting stiffness for the bonded circular layer is shown to be extremely

close to the result of Tsai and Lee (1999).

2. Governing equations

A circular layer of linearly elastic, homogeneous and isotropic material bonded between two rigid plates

is shown in Fig. 1. The circular layer has a diameter of 2b and a thickness of t. A cylindrical polar coor-

dinate system ðr; h; zÞ is established with the origin at the center of the layer. Under a pure bending moment

M , the rigid plates on the top and bottom of the layer rotate about the y axis (the r axis at h ¼ p=2) to form

Fig. 1. Circular elastic layer bonded between rigid plates under flexure load.
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an angle /. Denote u, v and w as the displacements along the r, h and z directions, respectively. The dis-

placements are assumed to have the form

uðr; h; zÞ ¼ �uuðr; hÞ 1

�
� 4z2

t2

�
ð1Þ

vðr; h; zÞ ¼ �vvðr; hÞ 1

�
� 4z2

t2

�
ð2Þ

wðr; h; zÞ ¼ 1

q
rz cos h ð3Þ

where q ¼ t=/ is the radius of bending curvature, �uu and �vv are the horizontal displacements in the middle

plane of the layer. Eqs. (1) and (2) represent the kinematic assumption of quadratically varied displace-

ments. Eq. (3) satisfies the assumption that planes parallel to the rigid plates remain planar. The expressions

in Eqs. (1) and (2) are different from the displacement expressions used by Tsai and Lee (1999) which have
an additional term considering the deformation of pure bending. The deformation of pure bending is

quadratically varied with z, so that it can be immerged in the terms of �uuðr; hÞ and �vvðr; hÞ. The expressions in
Eqs. (1) and (2) ensure that the rigid plates do not have any horizontal movement.

In the cylindrical coordinate system, the mean pressure p has a relation with displacements of

pðr; h; zÞ ¼ �j u;r
�

þ u
r
þ v;h

r
þ w;z

�
ð4Þ

where j is the bulk modulus, and the commas imply partial differentiation with respect to the indicated

coordinates. The normal stresses and shear stresses have the following expressions

rrr ¼ � k
j
p þ 2lu;r ð5Þ

rhh ¼ � k
j
p þ 2l

u
r

�
þ v;h

r

�
ð6Þ

rzz ¼ � k
j
p þ 2lw;z ð7Þ

srh ¼ l
u;h
r

�
þ v;r �

v
r

�
ð8Þ

srz ¼ lðu;z þ w;rÞ ð9Þ

shz ¼ l v;z
�

� w;h

r

�
ð10Þ

in which k and l are Lame�s constants. For clarification, the following two displacement functions are

defined

f ðr; h; zÞ ¼ u;r þ
u
r
þ v;h

r
ð11Þ

gðr; h; zÞ ¼ v;r þ
v
r
� u;h

r
ð12Þ
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The equilibrium equations in the r and h directions can be expressed as

2f;r �
g;h
r
þ u;zz þ w;rz ¼

k
jl

p;r ð13Þ

g;r �
2f;h
r

þ v;zz þ
w;hz

r
¼ k

jl
p;h
r

ð14Þ

The following average quantities through the depth are defined as

�ppðr; hÞ ¼ 1

t

Z t
2

� t
2

pðr; h; zÞdz ð15Þ

�ff ðr; hÞ ¼ 1

t

Z t
2

� t
2

f ðr; h; zÞdz ð16Þ

�ggðr; hÞ ¼ 1

t

Z t
2

� t
2

gðr; h; zÞdz ð17Þ

By using Eqs. (3) and (11), Eq. (4) becomes

�pp ¼ �j �ff
�

þ r
q
cos h

�
ð18Þ

Substituting the displacement assumptions in Eqs. (1)–(3) into Eqs. (13) and (14) and integrating the re-

sulting equations through the thickness lead to

�uu ¼ t2

8

k þ 2l
l

� �
�ff;r

�
� 1

r
�gg;h þ

k þ l
l

� �
1

q
cos h

�
ð19Þ

�vv ¼ t2

8

k þ 2l
l

� �
1

r
�ff;h

�
þ �gg;r �

k þ l
l

� �
1

q
sin h

�
ð20Þ

Differentiating the multiplication of r and Eq. (19) with respect to r and then adding the result to the

differentiation of Eq. (20) with respect to h yield

�ff;rr þ
1

r
�ff;r þ

1

r2
�ff;hh � a2�ff ¼ 0 ð21Þ

where a is defined as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12l
t2ðk þ 2lÞ

s
ð22Þ

Differentiating the multiplication of r and Eq. (20) with respect to r and then subtracting the result from the
differentiation of Eq. (19) with respect to h yield

�gg;rr þ
1

r
�gg;r þ

1

r2
�gg;hh � b2�gg ¼ 0 ð23Þ

where b is defined as

b ¼
ffiffiffiffiffi
12

t2

r
ð24Þ
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3. Solution of displacements

Under the pure bending moment, the elastic layer has the following symmetric and antisymmetric

properties

�ppðr; hÞ ¼ �ppðr;�hÞ ¼ ��ppðr; p � hÞ ð25Þ

�ff ðr; hÞ ¼ �ff ðr;�hÞ ¼ ��ff ðr; p � hÞ ð26Þ

�ggðr; hÞ ¼ ��ggðr;�hÞ ¼ �ggðr; p � hÞ ð27Þ

�uuðr; hÞ ¼ �uuðr;�hÞ ¼ ��uuðr; p � hÞ ð28Þ

�vvðr; hÞ ¼ ��vvðr;�hÞ ¼ �vvðr; p � hÞ ð29Þ

To satisfy the above conditions, the solutions of Eqs. (21) and (23) have the following expressions

�ff ðr; hÞ ¼
X1

n¼1;3;5;...

AnInðarÞ cos nh ð30Þ

�ggðr; hÞ ¼
X1

n¼1;3;5;...

BnInðbrÞ sin nh ð31Þ

where In is the modified Bessel function of the first kind of order n; An and Bn are the constants to be

determined. Substituting Eqs. (30) and (31) into Eqs. (19) and (20) gives

�uu ¼ t2

8q
k þ l

l

� �
cos h þ 3

2

X1
n¼1;3;5;...

An

a
In�1ðarÞ
h


� n
ar

InðarÞ
i
� nBn

b2r
InðbrÞ

�
cos nh ð32Þ

�vv ¼ � t2

8q
k þ l

l

� �
sin h þ 3

2

X1
n¼1;3;5;...



� nAn

a2r
InðarÞ þ

Bn

b
In�1ðbrÞ
�

� n
br

InðbrÞ
��

sin nh ð33Þ

At the edge r ¼ b, the normal stress in the r direction must satisfy the following condition

rrrðb; h; zÞ ¼ 0 ð34Þ
By using the expression of rrr in Eq. (5) and taking integration through the depth, Eq. (34) becomes

1

�
þ k
2l

�
�ff ðb; hÞ � 2

3b
�uuðb; hÞ
h

þ �vv;hðb; hÞ
i
þ k

2l

� �
b
q
cos h ¼ 0 ð35Þ

Substituting Eqs. (30), (32) and (33) into the above equation gives

1

"(
þ k
2l

þ 2

ðabÞ2

#
I1ðabÞ �

1

ab
I0ðabÞ

)
A1 þ

2

ðbbÞ2
I1ðbbÞ

"
� 1

bb
I0ðbbÞ

#
B1 ¼ � k

2l

� �
b
q

ð36Þ

for n ¼ 1, and

1

"(
þ k
2l

þ n2 þ n

ðabÞ2

#
InðabÞ �

1

ab
In�1ðabÞ

)
An þ

n2 þ n

ðbbÞ2
InðbbÞ

"
� n

bb
In�1ðbbÞ

#
Bn ¼ 0 ð37Þ

for n ¼ 3; 5; 7; . . ..
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The shear stress srh must satisfy the following condition at the edge r ¼ b
srhðb; h; zÞ ¼ 0 ð38Þ

By using the expression of srh in Eq. (8) and taking integration through the depth, Eq. (38) becomes

�ggðb; hÞ þ 4

3b
�uu;hðb; hÞ
h

� �vvðb; hÞ
i
¼ 0 ð39Þ

Substituting Eqs. (31)–(33) into the above equation gives

4

ðabÞ2
I1ðabÞ

"
� 2

ab
I0ðabÞ

#
A1 þ 1

"(
þ 4

ðbbÞ2

#
I1ðbbÞ �

2

bb
I0ðbbÞ

)
B1 ¼ 0 ð40Þ

for n ¼ 1, and

2ðn2 þ nÞ
ðabÞ2

InðabÞ
"

� 2n
ab

In�1ðabÞ
#
An þ 1

"(
þ 2ðn2 þ nÞ

ðbbÞ2

#
InðbbÞ �

2

bb
In�1ðbbÞ

)
Bn ¼ 0 ð41Þ

for n ¼ 3; 5; 7; . . ..
Eqs. (36) and (40) give the solution

A1 ¼ � kb
2lq

abA ð42Þ

B1 ¼ � kb
2lq

bbB ð43Þ

with

A ¼
4

ðbbÞ2 1þ ðbbÞ2
4

h i
I1ðbbÞ � bb

2
I0ðbbÞ

n o
2þ ðbbÞ2

4

h i
I1ðbbÞ � bb

2
I0ðbbÞ

n o
2
ab I1ðabÞ � I1ðbbÞI0ðabÞ

ð44Þ

B ¼
2
bb I0ðabÞ � 2

ab I1ðabÞ
� �

2þ ðbbÞ2
4

h i
I1ðbbÞ � bb

2
I0ðbbÞ

n o
2
ab I1ðabÞ � I1ðbbÞI0ðabÞ

ð45Þ

in which the relation between Eqs. (22) and (24) is applied. For n ¼ 3; 5; 7; . . ., Eqs. (37) and (41) give the

solution

An ¼ 0; Bn ¼ 0 ð46Þ
Substituting Eqs. (42), (43) and (46) into Eqs. (32) and (33) lead to

�uu ¼ b2

q
3k
4l

� �
1
�(

þ l
k

� 2

ðbbÞ2
� A I0ðarÞ

�
� 1

ar
I1ðarÞ

�
þ B

1

br
I1ðbrÞ

)
cos h ð47Þ

�vv ¼ b2

q
3k
4l

� �(
� 1
�

þ l
k

� 2

ðbbÞ2
þ A

1

ar
I1ðarÞ � B I0ðbrÞ

�
� 1

br
I1ðbrÞ

�)
sin h ð48Þ

If the elastic layer has a Poisson�s ratio m � 0:5, the magnitude of k becomes infinite and a is infinitesimal.
For a small quantity x,

I0ðxÞ � 1þ 1

4
x2; I1ðxÞ �

1

2
xþ 1

16
x3 ð49Þ
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Applying these approximation, Eqs. (47) and (48) can be reduced to

�uu ¼ b2

q
3

16

� �
1

8<
: þ 8

ðbbÞ2
� 3

r2

b2
þ

bb I1ðbrÞ
br � I1ðbbÞ

bb

h i
ðbbÞ2
4

þ 1
h i

I1ðbbÞ � bb
2
I0ðbbÞ

9=
; cos h ð50Þ

�vv ¼ b2

q
3

16

� �8<
:� 1� 8

ðbbÞ2
þ r2

b2
þ

bb I1ðbrÞ
br � I0ðbrÞ þ I1ðbbÞ

bb

h i
ðbbÞ2
4

þ 1
h i

I1ðbbÞ � bb
2
I0ðbbÞ

9=
; sin h ð51Þ

which are the horizontal displacements of the bonded circular layers of incompressible material.
The shape factor of the bonded circular layers is defined as S ¼ b=ð2tÞ, which gives, from Eqs. (22) and

(24),

ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ð1� 2mÞ

1� m

r
S; bb ¼

ffiffiffiffiffi
48

p
S ð52Þ

Therefore, it is known that the normalized horizontal displacements, �uuq=b2 and �vvq=b2 in Eqs. (47) and (48),

are the functions of S, m, r=b and h. The normalized radial displacement at h ¼ 0 and the normalized

tangential displacement at h ¼ p=2 are plotted in Figs. 2 and 3, respectively, as a function of r=b for the

Fig. 2. Radial displacement varied with radial distance at h ¼ 0.

Fig. 3. Tangential displacement with radial distance at h ¼ p=2.
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shape factors of 2 and 20 with several Poisson�s ratios. For the bonded layer of lower Poisson�s ratio, the
horizontal displacements become smaller and are more uniformly distributed along the radial direction.

For the bonded layer of high shape factor (S ¼ 20), the displacements differ greatly between incompressible

material (m ¼ 0:5) and nearly incompressible material (m ¼ 0:495).
The deformation of the bonded circular layer is also analyzed by the finite element method. In the finite

element analysis, the circular layer is modeled by 8-node solid elements with incompatible bending modes.

The horizontal displacements calculated by the finite element method at the middle plane (z ¼ 0) of the

layer with S ¼ 5 and m ¼ 0:3 are compared with the theoretical solutions of Eqs. (47) and (48) in Figs. 4 and
5 as functions of r and h, respectively, which show that the finite element solutions are very close to the

theoretical solutions.

4. Tilting stiffness

The effective bending modulus for the bonded elastic layer is defined as

Eb ¼
qM
Ir

ð53Þ

where Ir ¼ pb4=4 is the moment of inertia of the plane area about the r axis. The bending momentM has the
form

Fig. 4. Horizontal displacements in middle plane varied with radial distance.

Fig. 5. Horizontal displacements in middle plane varied with angle.
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M ¼
Z b

0

Z 2p

0

�rrzzr2 cos hdhdr ð54Þ

where �rrzz is the effective vertical stress defined as

�rrzz ¼
1

t

Z t
2

� t
2

rzz dz ð55Þ

By using the solutions of An in Eqs. (42) and (46), �pp has the form, from Eqs. (18) and (30),

�pp ¼ �j
b
q

r
b

�
� k
2l

abAI1ðarÞ
�
cos h ð56Þ

Substituting Eq. (7) into Eq. (55) and using Eqs. (3) and (56) lead to

�rrzz ¼ k
b
q

1

��
þ 2l

k

�
r
b
� k
2l

abAI1ðarÞ
�
cos h ð57Þ

From this, the effective bending modulus has the solution

Eb ¼ 2l þ k � k2

l

� � 8

ðbbÞ2 1þ ðbbÞ2
4

� bbI0ðbbÞ
2I1ðbbÞ

h i
abI0ðabÞ
2I1ðabÞ

� 1
h i

2þ ðbbÞ2
4

� bbI0ðbbÞ
2I1ðbbÞ

� abI0ðabÞ
2I1ðabÞ

ð58Þ

When ab tends to infinitesimal, the following function of ab in Eq. (58) may be approximated by

abI0ðabÞ
2I1ðabÞ

� 1þ 1

8
ðabÞ2 � 1

192
ðabÞ4 ð59Þ

Consequently, the effective bending modulus of the bonded circular layer for incompressible material is

Eb ¼
E
3

4

2
4 þ ðbbÞ2

24
�

ðbbÞ2
8

1þ ðbbÞ2
4

� bbI0ðbbÞ
2I1ðbbÞ

3
5 ð60Þ

in which E is the elastic modulus of the layer. The value of the last term in the bracket is between 0.5

(bb ¼ 1) and 1 (bb ¼ 0). Eq. (60) can be approximated by

Fig. 6. Effective bending modulus of bonded circular layers varied with Poisson�s ratio.
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Eb ¼
E
3

3:5

�
� 1

7S
þ 2S2

�
ð61Þ

which is applicable for S P 1.
According to Eq. (52), it is known that the normalized bending modulus Eb=E is a function of Poisson�s

ratio and shape factor. The curves of the bending modulus calculated from Eq. (58) varied with m for S ¼ 2

and 20 are plotted in Fig. 6, which show that, when compared with the finite element solution and the

solution of Tsai and Lee (1999), the bending moduli calculated by the three methods are nearly the same.

When using the pressure approach, Tsai and Lee (1999) made an assumption that the tangential dis-

placement on the edge of the middle plane of the layer is zero at the rotation axis. By means of the present

approach, this assumption becomes unnecessary.

5. Stress distribution

The effective vertical stresses calculated from Eq. (57) are plotted in Fig. 7 as a function of r=b at h ¼ 0

for the shape factors of 2 and 20 with several Poisson�s ratios. In this figure, the vertical stress is normalized

by bEb=q which is the maximum bending stress according to the elementary beam theory. The curves of

m ¼ 0:5 are calculated from

�rrzz ¼
bE
3q

4

8<
: þ ðbbÞ2

8
1

2
4 � r2

b2
� 1

1þ ðbbÞ2
4

� bbI0ðbbÞ
2I1ðbbÞ

3
5
9=
; r

b
cos h ð62Þ

which can be derived from Eq. (57). Unlike the distribution derived by the elementary beam theory, the

vertical stress in the bonded layer is not a linear function of the radial distance. The figure indicates that the

location of the maximum vertical stress is closer to the edge for the material of lower Poisson�s ratio.
The in-plane shear stresses can be derived by substituting the displacement assumptions in Eqs. (1)–(3)

into Eqs. (9) and (10) and using the solutions of �uu and �vv in Eqs. (47) and (48). On the bonding surface

between the elastic layer and the rigid plate (z ¼ t=2), the shear stresses in the radial and tangential di-

rections have the forms as

srzðr; h; t=2Þ ¼ 6kS
b
q

(
� 2

ðbbÞ2
þ A I0ðarÞ

�
� I1ðarÞ

ar

�
� B

I1ðbrÞ
br

)
cos h ð63Þ

Fig. 7. Effective vertical stress with radial distance at h ¼ 0.
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shzðr; h; t=2Þ ¼ 6kS
b
q

2

ðbbÞ2

(
� A

I1ðarÞ
ar

þ B I0ðbrÞ
�

� I1ðbrÞ
br

�)
sin h ð64Þ

When a is infinitesimal, applying the approximation in Eqs. (49) to (63) and (64) leads to

srzðr; h; t=2Þ ¼
ESb
2q

8<
:� 1þ 3

r2

b2
�

bb I1ðbrÞ
br � I1ðbbÞ

bb

h i
ðbbÞ2
4

þ 1
h i

I1ðbbÞ � bb
2
I0ðbbÞ

9=
; cos h ð65Þ

shzðr; h; t=2Þ ¼
ESb
2q

1

8<
: � r2

b2
�

bb I1ðbrÞ
br � I0ðbrÞ þ I1ðbbÞ

bb

h i
ðbbÞ2
4

þ 1
h i

I1ðbbÞ � bb
2
I0ðbbÞ

9=
; sin h ð66Þ

which are the bonding shear stresses for the elastic layer of incompressible material.

The bonding shear stress in the radial direction at h ¼ 0 and the bonding shear stress in the tangential

direction at h ¼ p=2 are plotted in Figs. 8 and 9, respectively, as functions of r=b for the shape factors of 2

and 20 with several Poisson�s ratios, which indicate that, for the bonded layer of lower Poisson�s ratio, the
bonding shear stresses have a more uniform distribution over the central part.

Fig. 8. Bonding shear stress in radial direction varied with radial distance at h ¼ 0.

Fig. 9. Bonding shear stress in tangential direction varied with radial distance at h ¼ p=2.
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The comparison of the bonding shear stresses between the finite element solutions and the theoretical

solutions calculated from Eqs. (63) and (64) is depicted in Fig. 10 for S ¼ 5 and m ¼ 0:3. For the bonding

shear stress in the radial direction, the theoretical solution is very close to the finite element solution except

the edge. For the bonding shear stress in the tangential direction, both solutions have the similar distri-
bution. Because the stress in the tangential direction is much smaller than the stress in the radial direction,

numerical error of the finite element analysis induces the bonding shear stress in the tangential direction to

have a larger deviation between two solutions.

The maximum shear stress resultant on the bonding surface, smax, is equal to srzðb; 0; t=2Þ, that is,

smax ¼
b
q

kS
24

ðbbÞ2 1þ ðbbÞ2
4

� bbI0ðbbÞ
2I1ðbbÞ

h i
abI0ðabÞ
2I1ðabÞ � 1

h i
2þ ðbbÞ2

4
� bbI0ðbbÞ

2I1ðbbÞ
� abI0ðabÞ

2I1ðabÞ

ð67Þ

For the layer of incompressible material, from Eq. (65),

smax ¼
b
q
ES ð68Þ

The magnitude of smaxq=ðbEÞ is a function of Poisson�s ratio and shape factor, which is depicted in Fig. 11.
smax increases with increasing Poisson�s ratio but reaches the plateau at a lower Poisson�s ratio for the layer

Fig. 10. Bonding shear stresses between theoretical solution and finite element solution.

Fig. 11. Maximum shear stress resultant on bonding surfaces.
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of smaller shape factor, so that smax is more sensitive to the variation of shape factor for a material of higher

Poisson�s ratio. When the material is incompressible, smax varies linearly with the shape factor.

6. Conclusion

Based on the two kinematic assumptions, i.e. horizontal planes remain planar and vertical lines become

parabolic after deformation, the circular elastic layers bonded between two rigid plates and sustaining a

pure bending moment are analyzed through a theoretical approach to find the closed-form solutions of
horizontal displacements in the bonded layers. The displacements in the radial and tangential directions are

shown to be proportional to cos h and sin h, respectively, and not contain any higher term of Fourier series.

The tilting stiffness of the bonded circular layer derived from these displacements is very close to the

previous research result where an additional constraint assumption is necessary to obtain the stiffness.

The analysis has no limitation on Poisson�s ratio so that the effect of Poisson�s ratio on the behavior of the

bonded layer can be studied. When the material of the bonded layer has a lower Poisson�s ratio, the shear
stress on the bonding surface has a smaller magnitude and a more uniform distribution over the central

part.
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